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The Debye-Waller factor and the coherent inelastic differential scattering cross 
section for the one- and two-phonon band modes have been investigated for an 
anharmonic crystal containing randomly distributed substitutional impurities of 
low concentration. The method adopted in the evaluation is that of double time 
temperature dependent Green's functions. The quantities thus evaluated have 
been separated into diagonal and nondiagonal terms. The diagonal terms are 
further separated in three contributions, namely the contributions from defects, 
anharmonicity, and simultaneous involvement of impurity and anharmonicity. 
A new mode, the "impurity-anharmonicity interference" mode, is the salient 
featue of the theory, and arises due to the interaction between local and anhar- 
monic fields. 

1. I N T R O D U C T I O N  

Experiments  involving inelastic coherent  and incoherent  scattering o f  
long-wavelength thermal  neutrons  (energies o f  1 eV or  less) provide one o f  
the most  powerful  means  for investigating the lattice vibrational  modes  o f  
a crystal (Shull and Wollan,  1956; Kagan,  1962; Kascheev and Krivoglaz,  
1961; Stewart and Brockhouse ,  1958; Chernop lekov  et al., 1963; Haas  et 

aL, 1963; Y a m a d a  and Shirane, 1969; Cowley,  1962, 1964; Shirane and 
Yamada ,  1967, 1969). The incoherent  scattering o f  thermal neutrons  pro- 
vides detailed informat ion  about  the f requency spectrum of  a crystal in 
which the scattering is isotropic and somewhat  less directly in crystals o f  
lower symmetry.  The coherent  scattering experiments  in which the energy 
and m o m e n t u m  delivered to the crystal by  thermal  neutrons  are measured,  
on the other  hand,  provide informat ion  about  the p h o n o n  dispersion curves 
(Kascheev and Krivoglaz,  1961; Cowley,  1964; Shirane and Yamada ,  1967; 
Van Hove,  1954; Kittel, 1963). The neut ron  scattering experiments  are 
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extremely helpful in the understanding of lattice dynamical properties of 
crystals (Marshall and Lovesey, 1971; Maradudin and Fein, 1962; 
Maradudin et al., 1971; Weinstock, 1944). 

The inelastic scattering of neutrons was first investigated theoretically 
by Weinstock (1944) for the one-phonon processes and the theory was 
subsequently extended by Sjolander (1954; Placzek and Van Hove, 1954) 
to multiphonon processes. Although the one-phonon processes are quite 
interesting and important from the standpoint of the information they yield 
about the dynamical properties of crystals, it appears to us that the multi- 
phonon processes are not negligible and do not appear as a manageable 
correction to the theory. In the harmonic approximation (Maradudin et al., 
1971; Weinstock, 1944) the coherent one-phonon inelastic neutron scattering 
spectrum consists of a number of delta-function peaks centered around the 
central frequency. The number of peaks in the cross section is determined 
by the energy and momentum conservation conditions which govern the 
scattering process (Maradudin and Fein, 1962). 

However, no crystal is perfectly harmonic and pure. The theory of the 
harmonic approximation applied to real crystals suffers severe drawbacks 
in investigating a large number of crystal properties. If we go beyond the 
harmonic approximation and retain cubic and quartic terms in the potential 
energy expansion of the crystal, we find that the infinitely long-lived normal 
modes of vibration (in the harmonic approximation) no longer remain exact 
eigenstates of the crystal Hamiltonian and their lifetimes are considerably 
reduced to a finite value. This happens as a result of the coupling of normal 
modes (noninteracting in the harmonic approximation), which, in turn, give 
rise to the phonon interaction and this situation essentially necessitates the 
solution of a many-body problem (Maradudin and Fein, 1962; Elliott and 
Maradudin, 1965; Shukla and Muller, 1980). 

The presence of defects in a crystal, on the other hand, considerably 
modifies the frequency spectrum of the crystal, which drastically changes 
all the frequency-dependent properties of crystals (Kittel, 1963; Elliott and 
Maradudin, 1965; Tani, 1974; Sahu and Sharma, 1985). The presence of 
substitutional isotopic impurities in the host crystal leads to new phonon 
fields localized around the defect site which give rise to impurity modes. 
The impurity modes may be localized, gap, or resonance modes; the frequen- 
cies of the former two modes lie in the ranges forbidden in the host crystal 
and the frequencies of the later mode lie in the allowed frequency band of 
the host crystal. The local and gap modes are nonpropagating and the 
resonance modes are propagating modes. The changes in the phonon 
frequency spectrum caused as a result of substitutional impurities are 
substantially observed in a large number of neutron experiments (Kagan, 
1962; Elliott and Maradudin, 1965; Lakatos and Krumhansl, 1968, 1969). 
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Extensive literature exists explaining the neutron scattering events 
(Maradudin and Fein, 1962; Weinstock, 1944; Sj~lander, 1954; Placzek and 
Van Hove, 1954; Elliott and Maradudin, 1965; Tani, 1969, 1970, 1974; Tani 
and Tsuda, 1969; Takemura and Tani, 1971; Gairola and Semwal, 1977; 
Shukla and Muller, 1982; Sahu and Sharma, 1985; Acharya et al., 1983; 
Kothari and Singwi, 1955; Maradudin, 1966). When the harmonic approxi- 
mation is considered, some authors include the anharmonic effects and 
some consider the defect contributions only. One rarely comes across work 
in which impurity and anharmonicity effects are considered simultaneously. 

In the present paper we study the problem of inelastic neutron scattering 
in an isotropically disordered anharmonic crystal. As a consequence of 
anharmonic forces and localized phonon interactions, the inelastic neutron 
scattering spectrum exhibit finite delta-function peaks and the frequencies 
are shifted relative to the frequencies of the harmonic approximation. The 
phonon frequency shifts and linewidths which are independent of tem- 
perature in the harmonic approximation are found to depend on tem- 
perature, impurity concentration, and force constant changes caused by 
substitutional impurities which show up in the experiments. Simultaneous 
inclusion of defects and anharmonicities results in a new type of phonon 
interaction, which we call the impurity-anharmonicity interaction. The 
phonons present in the anharmonic force field and those in the localized 
field of the impurity interact with each other, giving rise to this new scattering 
process. These processes are of significant magnitude and cannot be neglec- 
ted in comparison to other events (Indu, 1990; Painuli et al., 1990). In the 
case of inelastic neutron scattering we take into account the defects, anhar- 
monicities, and their interfering events to investigate the differential cross 
section of neutrons and the Debye-Waller factor. The differential cross 
section is evaluated for the one- and two-phonon processes. The separation 
of these quantities into diagonal and nondiagonal parts gives the additional 
feature of the theory. The individual contributions of defects, anhar- 
monicities, and of the simultaneous involvement of defects and anhar- 
monicities are also treated. 

The general formulation of the problem is given in Section 2, and the 
defect-induced anharmonic Hamiltonian is given in Section 3; this section 
also includes the evaluation of multiphonon double-time thermodynamic 
Green's functions. Section 4 is devoted to the derivation of the Debye-Waller 
factor and Section 5 gives the detailed evaluation of one- and two-phonon 
differential scattering cross sections; discussions are given in Section 6. 

2. FORMULATION OF THE PROBLEM 

The differential scattering cross section per unit solid angle di) and 
per unit interval of outgoing energy de of scattered neutrons in the first 
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Born approximation for coherent scattering is given by (Van Hove, 1954) 

d2o-coh a2lKf[ 
a n  d~ - h l g ,  I S(K, to) (1) 

where Ki and K s are the wave vectors of the incident and scattered neutrons, 
respectively, hK = h(Ki-Ky)  is the momentum transfer from the neutrons 
to the crystal, and hto = ( h / 2 m ) ( K ~ - K } )  is the energy transfer from 
neutrons to the crystal, a describes the scattering length of the nuclei, and 
(Maradudin and Fein, 1962; Shukla and Muller, 1980) 

S(K, to) = [exp(-2 W)/27rN] Y~ exp{-iK. [x ( l ) -  x(l')]} 
11' 

x f~-o~ dt exp(itot) 

x exp{([K-u(/,  t)][K.u(l' ,  0)3)} (2) 

Here, the position vector x(l) of the mean position of the/th atom is related 
to the displacement u(/, t) of the /th atom from its mean position and the 
instantaneous position vector R(/) of the/ th  atom in the crystal by R(/ )= 
x(l) + u(/, t). The quantity 2 W is known as the Debye-Waller factor and is 
given by (Maradudin and Fein, 1962; Shukla and Muller, 1980) 

2 W = - (MN)-1  E [K. e(k)][K, e(k')] exp[2~ri(k + k'). x(l)] 
kk (toktok') 1/2 

x lim I ~ n(to) dto Im Gkk'(to + ie) (3) 
e-->O 3-o 

where G kk, ( to)  defines the Fourier-transformed double-time thermodynamic 
Green's function and n(to) is Planck's distribution function. 

The dynamical structure factor S(K, to) can be expanded in powers of 
the atomic displacement under the integral sign of equation (2) in the form 

S(K, to)= So(K, to)+ S~(K, to) + S2(K, t o ) + ' "  (4) 

where So(K, to) represent coherent elastic (zero-phonon process) scattering 
of neutrons and is given by (Maradudin and Fein, 1962) 

So(K, w) = N 2 e -2w 6(to) A(K/2,rr) (5) 

S0(K, w) is elastic because of the factor 6(o0) and is coherent because of 
A(K/27r), which expresses the Bragg condition. The terms S1(K, to) and 
S2(K, to) describe the situation of present interest to us, coherent inelastic 
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scattering of neutrons by one-phonon and two-phonon processes, respec- 
tively, and are given by (Shukla and Muller, 1980) 

Sn(K, to) = (e-2W/n! 2~rN) Y exp{-iK. [x( l ) -  x(/')]} 
ll" 

• f~-o~ dt exp(itot) 

x ([K.u(/, t)][K.u(/', t)])"; n = 1, 2 , . . .  (6) 

The quantity defined in angular brackets (. . .) can be expressed in terms of 
the spectral distribution function, which is readily obtained from the Green's 
functions of the specific problem. Thus, S(K, to) includes all the solid-state 
physics of the problem and yields the multiphonon series via equation (6). 
We shall now investigate in detail the nature of the dynamical structure 
factor S(K, to) for an impure anharmonic crystal. 

3. CRYSTAL HAMILTONIAN AND GREEN'S FUNCTIONS 

Let us consider a three-dimensional Bravais crystal in which N - n  
lattice sites are occupied by atoms of the host crystal with the mass of each 
atom M, and the rest of the n sites are occupied by isotropically substituted 
impurity atoms each of mass M'. The impurity concentration is kept very 
low so that the impurity-impurity interaction can be ignored. The Hamil- 
tonian of this problem can be written as 

H = Ho+ HA + HD (7) 

where/40, HA, and H u describe the unperturbed, anharmonic, and defect- 
induced parts of the Hamiltonian, respectively, and can be expressed in 
second-quantized form as 

Ho = (1/4) E htok(A*Ak+B*Bk) (8a) 
k 

H A = t~ ~ ~.. V,(kl, k2 , . . . ,  ks)Ak,Ak2,... ,  Ak~ (8b) 
S>--3 kl,k2,k 3 

Ho = - h  E [C(kl, k2)Bk, Bk2- D(k,,  k2)Ak, Ak2] (8c) 
kl,k2 

In equation (8b), Vs(k~, k2,. �9 ks) is the anharmonic coupling coefficient, 
the order of which is given by the subscript s, and C(kl, k2) and D(k~, k2) 
are the mass difference and force constant change parameters, respectively. 
These parameters are well defined (Sahu and Sharma, 1985; Indu, 1990; 
Painuli, 1990) and need no further description. 

The double-time temperature-dependent Green's function 

Okk'( t -- t') = ((Ak( t); Ak*'(t))) (9) 
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can be obtained in the form 

Gkk'(CO ) = cokTlkk'/ ~r[ co 2 -  ~ 2 -  2cokP ( kk', co)] (10) 

We have used the quantum dynamics of second-quantized operators and 
Dyson's equation method to obtain equation (10); the details of this method 
are well described elsewhere (Indu, 1990; Painuli et aL, 1990). The notation 
is defined as 

~kk' ~" 8kk' + 4 C (  k ,  - - k ) /  cok (11) 

~2 = co2k + (cok/ETr){([ Fk( t), B*,]~ + (col cok)([ Fk( t), A*'] ~ 

+ (4/cok) Y~ C( -k ,  k0([Fk(t),  B*,] ~ 
kl 

+ 8(,o ~ - co,~. )C(-k ,  k ' ) /co . } ,= , ,  (12)  

and 

with 

P(kk ' ,  to) = (2r * ' Fk,(t  )))o, (13) 

Fk( t ) = F(kl)(t) + F(k2)( t ) + F(k33( t) + F(k4)( t) (14) 

F(kl)(t)=4cc ~ , [ D ( - k ,  kO+(cok , /Wk)C( -k ,  kl)]Akl (15a) 
kl 

F(k2)(t) = 167r Y~ [ C ( - k ,  k l )D( -k2 ,  k~)/cok]Ak~ (15b) 
kl,k2 

F?~(t) =2~  Y 2 sVs(k~,k2...k,_,,-k) 
s~3 kbk2".'ks_ 1 

x Ak~Ak2 " " " Ak~_~ (15C) 

F(k4)(t) = 4 • [ C ( - k ,  k,)/cok]F(k3)(t) (15d) 
kt 

F(k3,)(t) can be obtained from F(k~)(t) after replacing k by k~. 
The phonon excitation spectrum described by P(kk ' ,co)  can be 

obtained with the help of the zeroth-order renormalized Hamiltonian 

_1 (o) ten = (h/4) ~ [(~/COk)A*kAk + cokB*Bk] (16) 
k 

This Hamiltonian is extremely useful for obtaining the multiphonon Green's 
function appearing in P(kk ' ,  co) [=--P(k, to)] with the help of the equation 
of motion method (Painuli et al., 1990). P(k,  co) can also be expressed in 
the most widely used form as 

P(k,  co+ie)=Ak(co) - iFk(co) ;  e ~ 0  + (17) 
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where the real part of P(k, to) (phonon self-energy) Ak(W ) is the shift in 
the phonon frequency of the perturbed mode and the imaginary part Fk(OJ) 
is the phonon frequency linewidth at the half-maximum of the phonon 
frequency peak. The new form of Gkk'(W) can be expressed as 

Gkk,(W) = Wk~kk,/ Tr[W2--~2k + ZiWkFk(tO)] (18) 

w h e r e  gk is the perturbed mode frequency and can be expressed in terms 
of the renormalized mode frequency 0.~ k a s  

~2 -_ t~2k + 2WkAk(w) (19) 

The phonon frequency shifts and widths can be obtained as (Indu, 1990) 

& ( w )  = a f '(w) + A2(w ) + Af f ' (w)  (20) 

and 

r~(w) = rD(w) + r ~'(w) +FAD(w) (21) 

where the superscripts D, A, and AD stand for the contributions due to 
defects, anharmonicities, and impurity-anharmonicity interactions, respec- 
tively. The various terms in equations (20) and (21) are readily obtainable 
as (Indu, 1990) 

(22a) AD(w) = 8 2 R ( - k ,  k l )R*(-k,  kl)Wkt/(W 2 -- 0~21) 
kl 

~ ( o , )  = A~A(w) + A~A(,o) 
A2D(w) 16Y.]C(-k, 2 -2 a = kl)l wk AkL(w) 

kl 

A~A(W) = 18 ~. [V3(kl, k2, -k)]Znl 
kl,k2 

2 2 --1 2 X[S+l(-o+t~((.o--(-O+c~) - l - S _ l O ) _ a ( ( D - w 2 o ~ )  -1 ]  

A4A(to) = 48 ~, I V4(k,, k2, k3, -k)]2~72 
kL,k2,k3 

2 2 - 1  x[S+2~o+o(w -o)+~) +3S_2w_o(w2-w2_o)-q 

F~(w) = 8~re(o)) Y, R ( - k ,  k l )R*(-k ,  kOWk,8(w 2-  t~2k,) 
kl 

r~ (~)  = r ~ ( w )  + r ~ ( w )  
r2~ 1 6 E ] C ( - k ,  2 --2 A = k0[  w~ r ~ ( w )  

r3a(w)=18~re(w) Y~ I V3(k,,k2,-k)]2"ql 
kl,k2 

x[S+,w+~a(w ~ w~+o)+ ~ 2 - S_~w_~a(o) - w _ ~ ) ]  

r~A(w)=48~re(w) 2 IV4(k,,k2,k3,-k)[2~T2 
kl,k2,k3 

• [S+2w+oa(w 2 - 0,20) + 3S_2w_oa(w 2-  0,20)] 

(22b) 

(22c) 

(22d) 

(22e) 

(23a) 

(23b) 

(23c) 

(23d) 

(24) 
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with 

and 
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R(k,, k2) = (tOk,/tOk2)C(k~, k2)+ D(k~, k2) 

+4 ~ C( -k l ,  k~)D(-k~, k2)/tOk, (25) 
k~ 

rh = Wk, tOk2/ ~k/3k2 ; 72 = tOk~Wk2 Wk3/ ~k, ~k2 ~k3 (263) 

0.)• = O~k, --t- O.~k 2 ; W• ~--- O~k, q- (J~k2 q- 0~k3 (26b) 

S• = nk2 + nk~ ; S• = 1 + nk, nk~ + nk2 nk3 + ng3 nk, (27) 

e(w) = 1 for w>O 
(28) 

= - 1  for oJ <0  

nk = co th ( f l hWk /2 )  

The correlation function ( A k ( t ) A * ( O ) )  is related to the Green's function in 
the form 

( A k ( t ) A * ( O ) )  = f~_~ exp(flhw) Jkk,(W) exp(--i~ot) dw (29) 

where the spectral function Jkk'(W) is given by 

Jkk'( OJ ) = lim n ( o~ )[ Gkk,( W + ie ) -- Gkk,( ~O -- ie ) ] (30) 
E--~O 

With this evaluation the basic requirements to investigate the inelastic 
neutron scattering are in hand. 

4. THE D E B Y E - W A L L E R  FACTOR 

Making use of equation (18) in equation (3), we can obtain the exponent 
of the Debye-Waller factor in the form 

2 W = ( M N ) - I ~  [K.e(k)][K.e(k')] f~ 2n(~')~Vkk,WkFk(0J) 
k,k' 

x [(,o2- o~)2+4,o~F~(,o)] ' do, (31) 

If the conditions aFk( to ) /0 to  << 1 and 3Ak(tO)/OtO << 1 are satisfied under a 
reasonable limiting procedure, the integrand of equation (31) has a steep 
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maximum at the frequencies to = tok. If  we further assume that in the 
neighborhood of to = ~Ok, Fk(tO) varies slowly with to, i.e., l'k(to ) -----I'k(tok) , 
then the integrand shows a Lorentzian line-shape distribution with a 
maximum at to - 03k. If  the variation of widths and shifts with frequency is 
taken into account, then, apart from the nature of  combination bands arising 
as a result of  anharmonic interactions, there will appear new sharp delta- 
function peaks and the band shape will be altered (Thomson, 1963; 
Mavroyannis and Pathak, 1969). For values of  to in the immediate vicinity 
of Ogk, the F2(to) will have a vanishingly small contribution in the 
denominator of the integrand of equation (31) and hence it takes the form 

2 W = (MN)-' Z [K. e(k)][K- e(k')] f~_~ 2nkk'tokn(to) 
k,k' 

x G ( ~ ) ( ~ : -  o~) -~ dto (32) 

Using the orthogonality relation Y. e,~(kj)e~(kj)= 3,~t3 and the nature of  
J 

~kk', we can separate the exponant  of  the Debye-Waller  factor into diagonal 
[2 W]d and nondiagonal [2 W]nd parts, 

2W=[2W]d+[2W].d 

where 

[2 W]d=( MN)-' Z Ka f~ 2to~n(to)G(to)(to2-g~)-~ dto 

[2 W]nd=8(MN)-l ~k~k' [K'e(k)][K'e(k')] f~-~ C(k' -k)n(to) 

x rk(to)( to 2 -  o~g) -2 dto 

(33a) 

(33b) 

(33c) 

The diagonal part can be further separated into three terms arising due to 
the defects, anharmonicities, and simultaneous involvement of  defects and 
anharmonicities. This can be easily obtained as the direct consequence of 
Fk(to) in the light of equation (21). The nondiagonal contribution chiefly 
depends on the mass change parameter and drops to zero in the absence 
of an impurity. This can also be understood in the form of a phonon field 
interaction arising due to the localized fields developed as a direct con- 
sequence of  mass changes at the impurity sites with anharmonic and local 
phonons. After some complicated algebra the diagonal part of  Debye-Waller  
factor can be obtained in the form 

[2 W]d = [2 W]~ ~ + [2 W] 3A + [2 w]4A+ [2 W] a~ (34) 
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[2 W]~' = 1 6 ~ K 2 e ( ~ 2 k , ) ( M N )  - '  • toktoklR(-k, k l )R*(-k ,  kl) 
kt 

• n(~k,)(~2k,  --(,0k}~'2"-2 (35a) 

[2 W] 3a = 3 6 ~ r t o k K : ( M N )  -1 Y, I V3(k~, k2, -k)lZna 
klk2 

• [ e  ( t o 2 + ~ ) S + l t o + ~ n  (to+,~)(to2+= -- O~2k) - 2  

2 2 + e(w_,~)S_,to_,~n(to_,~)(to_,~ - o~) -21 (35b) 

[2W] 4A = 96~ t ok K  2( M N )  -a Y~ ]Va(kl, k2, k3, -k)12r/2 
klk2k3 

2 X [e(to+t3)S+2to+t3n(to+t3)(to2+t3 - w~,) -2 

2 2 z2 --2 
+3e( to_ts)S_z to_t3n( to_t3)( to_t3- tok)  ] (35c) 

[2W] a ~  16 E IC(-k,  k1)12tok212 w]Ak,  (35d) 
kl 

Here [2w]a_k, stands for the value of [2W] A when all the k values are 
replaced by kl. It is obvious from the above expressions that the inclusion 
of defects makes it dependent on impurity concentrations and force constant 
changes, and on the other hand it becomes temperature dependent due to 
the inclusion of anharmonicities. 

5. DIFFERENTIAL SCA'ITERING CROSS SECTION 

The scattering function So(k, w) for all processes in which no energy 
is exchanged between the neutrons and the crystal is given by all terms in 
the expansion of the terms appearing in the angular bracket of equation 
(2) which are independent of exp(+itot). The scattering term Sl(k, to) reflects 
the emission or absorption of one phonon, while $2(k, to) arises due to the 
creation or destruction of two phonons. The term &(k, to) gives the 
dominant contribution to the differential cross section for temperature not 
much higher than the Debye temperature, and S2(k, to) gives the higher- 
order correction to the differential scattering cross section. 

5.1. Scattering of Neutrons by One-Phonon Processes 

The evaluation of Sl(k, to) is straightforward from equation (6). For 
n--1, the normal coordinate substitution in second-quantized notation 
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yields 

S,(k, w)= ( hl2M) exp(-2W) E A(K-k)A(K-k')(o)k, Wk2) -'/2 
k k '  

x [K. e(k)][K-e(k')] f -oo 
x exp(-iwt) dt (36) 

Substituting the value of the correlation function from equations 
(29), (30), and (18) in equation (36), we obtain 

S,(k, co) = exp(-2 W)[S,,d(K, co) + &,nd(K, w)] (37) 

where the diagonal and nondiagonal parts, respectively, are obtained as 

2h &,a(K, o , ) = ~  IA(K- k)12K2o)k 

f_ ~ e~'~ do) 
X 13h~o oo(e - 1)[(~o2- o~2)2 + &o2F2(o))] (38a) 

and 

2h 
SLnd(K , c o ) = ~  • A ( K - k ) A ( K - k ' ) [ K . e ( k ) ] [ K . e ( k ' ) ]  

k '~  k '  

o)k [oo eah~ -k)Fk(O)) do) 
X(0)k,o)k2)l/2 .J--o~ ( e ~ O , - 1 ) [ - ~ ( ~ w 2 _ ~ ~ - 2 ( o j ) ]  (38b) 

The diagonal part S~,a(K, o)) gives the principal contribution to S(K, oJ) 
and the nondiagonal part SI,,d(K, co) gives small corrections (however, not 
negligible) due to the interference of anharmonic force constants and defect 
parameters and the mass change parameter C(kl, k2). The diagonal part 
can be studied in more detail. In light of equation (21), it can be obtained 
in terms of individual contributions coming from defects, anharmonic 
effects, and from simultaneous involvement of anharmonic force and local- 
ized fields. The appreciable contribution of defects and anharmonicities 
distorts the Lorentzian line-shape distribution of S(K, oJ) and for a small 
value of phonon frequency widths we can reexamine &,o(K, o)) in the 
immediate vicinity of co = ~k, which yields 

SI,d(K , o)) = s1D, d(K, O)) "t- SIAd(K, O)) "Jv SIA, D(K, (.O) (39) 

where 

S,~d(K, o)) = (2h/M) E IA(K-k)12K2cok foo [n(~o)+ 1]r~(oJ) 
k 3-oo 

x (0~ 2 -  0~2) -2 do) (a = D, A, AD) (40) 
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Equation (38) shows that the scattering function is not only a two-delta- 
function distribution like the harmonic distribution, but has a Lorentzian 
line-shape distribution. Equation (40) shows that a large number of 
impurity-concentration- and temperature-dependent delta-function peaks 
appear in the band mode distribution at the frequencies +w~,  +w• The 
one-phonon differential scattering cross section can now be given in the form 

where 

d2orc~ f-~m 
d--~-de - ~ Ak(K, to)F~(to)(to 2 -  o~) -2 dto 

+I~-o~ yk~k, Akk'(K'to)F~(~176 &~ (41) 

Ak(K, to) = (2a2/ M)IKe/ K,I [A(K- k)[2K2tok 

x [ n (to) + 1 ] exp(-2 W) (42a) 

akk,(K, to)= (2a2/ M)IKe/ K, I A ( K - k ) A ( K - k  ') 
x [K" e(k)][K, e(k')] 

x tok(tok, tok2)-l/2[n(to) + 1] exp(-2 W) (42b) 

The impurity concentration, frequency, and temperature dependences 
of the phonon linewidths have been obtained in the form (Indu, 1990) 

r~(to) = AlC(1 - c)to4+ a2cto 2 (43a) 

F3A(to) = Blto2T; F4A(to) = B2to2T 2 (43b) 

F3AD(to) = blC(1 - c)to4T; F4AD(to) = b2c(1 - c)to4T 2 (43c) 

where A~, A2, B1, B2, bl,  and b2 are some constants and c is the impurity 
concentration. Use of equation (43) in equations (38), (39), and (41) clearly 
shows that the one-phonon differential cross section depends on the 
temperature linearly and nonlinearly and varies similarly with impurity 
concentration. 

5.2. Two-Phonon Differential Cross Section 

The two-phonon scattering factor can be obtained from equation 
(6) for n = 2 by the usual simplifications in the form 

S2(K, to) = ( N / 4 ~ ) ( h / 2 N M )  2 exp(-2 W) ~ A ( -k+k l  +k3) 
kl,k2,k3,k4 

• A ( K -  k2 - k4)[K- e(k~)][K, e(k2)] 

• [K. e(k3)][k, e(k4)] 

x (tok, tok2tok~tok,) -~/2 dt exp(iwt) 

x (A~,(t)A~(t)A~,(O)Aa(O)) (44) 
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Thus, we notice that the problem of evaluating the two-phonon differential 
scattering cross section of an impure anharmonic solid is reduced to that 
of the calculation of a two-time correlation function on a suitable model 
Hamiltonian. The correlation function can be evaluated by factorizing it 
according to a suitable decoupling scheme (Gorkov, 1958; Zubarev, 1960). 
Thus, for the average of a four-operator product, we write 

(Ak,( t)Ak2( t)Ak3(O)Ak~(O)) 

= (Ak,(t)Ak3(O))(Ak2(t)Ak4(O)) 

+ (Ak,(t)Ak,(O))(Ak2(t)Ak3(O)) (45) 

In writing equation (45), we have neglected the correlation of operators 
with the same time argument, because they do not contribute in the energy 
transfer relating the present problem. After some complicated algebra and 
use of equation (45), we can obtain a considerably simplified form of 
equation (44) as 

S2(k, to) = (N /2c r ) (h /2NM)  2 exp(-2W) )~ ]A(-k+kl+k2)l 
kl,k2 

x {[K" e(kl)][K, e(k2)]}2(tOk,~Ok~)-lI((o) (46) 

where 

I ( o) ) = J_~ dt exp(io)t) ( (AklA~3)( Ak2AL) ) (47) 

Evaluation of the correlation functions present in I(o9) yields 

I(o~)=(4tos f~ooI~o dtoldto2 

X" 2 Z2 2 +  2 2 2 ~2 2_t - 2 2 (48) [(("1-~o<) 4(o<r<(~ol)][(a,2-a, k2) 4~o<r<(~o2)] 
where Fk,(toi) and gk, are obtainable from equations (19) and (21), respec- 
tively, on appropriate replacement of indices and 

~klk 2 = [1 + 8C(kx, --kl)/tOk,]aklk2"~- 16C(k1, -kl)  

x C(k2, --k2)/tOk, Ok: (49a) 

and 

N(wi) = exp(flhw,)/[exp(~hto,) - 1]; i = 1, 2 (49b) 

The exact evaluation of the double integral (48) is not possible. We can 
evaluate this integral for the nonperturbative approach in which the 
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integrand is peaked around the immediate vicinity of frequencies o~k, and 
O~k2 for small values of the phonon linewidth (Shukla and Muller, 1980; 
Pathak, 1965; Shukla, 1980). Hence, 

I ( to )  = (4tokttot~)2~klk2 do) 1 alto 2 N( to l )N( to2)  
co 

2 ~ 2  2 ~ 2  2 x rk , ( t o0 r~ ( to2 ) [ ( t o ,  - to k , ) ( to2-  to k2)] (50) 

However, a next permissible approximation can be used. The integrand 
may be peaked as a delta-function peak, but at the same time the contribution 
of widths at O~k, cannot be neglected in the denominator of the integrand. 
T h u s ,  

I ( t o )  * -" -1 -1 = ~klk2N(tokl)N(tok2)Fkl  ( ( / ) k l ) Y k 2  (O)k2)  (51) 

Substitution of equation (51) in equation (46) yields 

S2(K, to) = exp(-2 W) [S2,d(K, ~o)+ S2,.d(K, to)] (52) 

where 

S2,d(K, to) : (N/27r)(hK2/2NM) 2 ~ IA(-K+ K,)[[1 + 8C(kl,  --kl)/tok,] 
kl 

X [N( t~k , ) / tok ,  r k , (~k , ) ]  2 (53a) 

S2,nd( K, t o ) :  (2N/'n')(h/NM) 2 E IA(-k+kl+k2)l{[K'e(kl)]  
k l # k  2 

x [K. e(k2)]}2(tokltOkE)-EC(k,, -k , )  C(k2, -k2) 

• N(~k,)N(~2)/Fk,(~,)F~2(~ %) (53b) 

The nondiagonal contribution S2.no(K, to) contributes only in the pres- 
ence of impurities and arises due to the interaction of mass change para- 
meters with various other terms. The diagonal term also shows a strong 
dependence on mass change parameter, but for a pure crystal this contributes 
as 

S2,d(K, to) = (N/27r)(hk2/ENM) 2 

X -]- ~ A t, 2 E l a ( - k  k l ) l [ N ( t o k , ) / t o k ,  Fk,(tok,)]  (54)  
kl 

6. DISCUSSION 

We have investigated the contribution of defects and anharmonicities 
in a crystal to the exponent of the Debye-Waller factor and the one- and 
two-phonon differential inelastic neutron scattering cross sections. For the 
first time it has been established that quite a significant contribution of the 
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impurity-anharmonicity interactions appears to describe these physical 
properties. As the defects alter the crystal properties drastically, the intensity 
of the interactions of localized fields with the anharmonic fields is quite 
significant in comparison to anharmonic effects. It is found that these 
quantities can be separated into diagonal and nondiagonal terms. The 
diagonal terms are found to give principal contributions, while the non- 
diagonal terms give a significant contribution but have a smaller magnitude 
and contribute only in the presence of impurities. The perturbed mode 
frequencies are found to depend on temperature, impurity concentration, 
and force constant changes. The renormalized mode frequency a3k describes 
the perturbed mode frequency and can be evaluated from equation (12) as 

o;~ 2 A =O)k_l_atOk[tOk + o ) D  AD 2 + ( o , k ) / , o k ]  (55) 

with 
A ! ok ~ -18 ~ V3(k', k ,  -k)  V3(-k', kl, --kl)nkco~' (56a) 

kl 

D 0)k ~ C(kl, -k)  + D(kl, - k ) + 4  Y~ C(kl, -k)D(kl ,  --k)6Ok q (56b) 
kl 

A. C(k~, -k)w2 (56c) (.0 k = 

The impurity modes which significantly contribute to the Debye-Waller 
factor and neutron scattering in the present case can be characterized by 
the gap (G) or local (L) mode frequencies according to the nature of the 
impurities as 

2 ~2  t ~ 
(-.0 G,  L = [(-O k + 209kAk(Ogk)  -- 16~0kI1]/(1 + 16WkI2) (57) 

where 

and 

11 

A tk ( ~_)k ) --__ m A ( (~_)k ) _~_ A kAD ((.Ok)* 

= [ V/(27r) 3] J R(-k,  k l )R*(-k  , kl) 

- 2  3 x (COk,/O)kl)kl sin 0 dkl dO do5 

(58) 

(59a) 

f 
12 = [ V / ( 2 7 1 " )  3 ]  J R(-k ,  k0R*(-k ,  k l )  

x (O)kl/~4kl)k 3 sin 0 dk I dO dch (59b) 

Equations (31), (38), and (48) show that the distributions are asym- 
metric in character and tend to distort the Lorentzian line-shape distribution. 
These distributions are certainly not of similar nature to what has been 
found in the harmonic approximation to give the delta-function peaks. 
However, if the Breit-Wigner approximation is introduced, these distribu- 
tions tend to give a delta shape distribution, but one that is temperature 
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and impurity concentration dependent. The temperature dependence of the 
distribution and frequency adds a new feature to the present approach. 

The phonon linewidth Fk(to) frequently appears in the results, which 
is a measure of phonon lifetime, thus making the problem dependent on 
phonon lifetime. The nature of a phonon lifetime showing temperature, 
frequency, and defect dependence is described by equation (43), which on 
substitution in equations (31), (38), and (48) gives obvious temperature and 
defect dependences. Apart from the methods of harmonic approximations 
(Shukla, 1980), we have obtained the two-phonon inelastic differential cross 
section completely on the anharmonic treatment. The contribution of 
phonon lifetimes to the two-phonon processes appears in the form 

2 z ~ D ~ 2~_ A ~ 2~_ A ~ D z 
rk,(OJk,) =[Fkl(OOk,)] [rk~(Wkl)] 2Fk,(O>k,)Fkl(OJk~) (60) 

which indicates that the magnitude of this quantum correction is not very 
large, but still is not negligible. A large number of phonon peaks appearing 
in the frequency spectrum exhibits the energy distribution at different 
frequencies, • •177 +to• • etc., due to the neutron scattering. 

It emerges from the present study that all the salient features of the 
Debye-Waller factor and the scattering of neutrons from single- and two- 
phonon band modes in an isotropicalty disordered crystal can be discussed 
by considering the defect and anharmonic terms in the crystal Hamiltonian. 
The appearance of an impurity-anharmonicity interference mode is the 
salient feature of the present work which cannot be ignored from the theory. 
We have not evaluated the values of various contributions to the neutron 
scattering, due to the great complexity of the computation, which chiefly 
arises from the large range of phonon frequencies involved and the presence 
of anharmonicity and defects in the crystal. The present results are general 
and can be applied to specific model crystals with the help of a computer. 
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